News
BCAA (Branched Chain Amino Acid) Research Studies show BCAA's with High Leucine increase protein Synthesis
Great news for Punish Natural Nutrition!
Taking Punish BCAA's with punish Protein will stimulate skeletal muscle protein synthesis (MPS) Muscle growth.
Punish BCAA's have 7.6g of Leucine per serve which is optimal for stimulating skeletal muscle protein synthesis (MPS) Muscle growth and muscle recovery.
Research studies show Using BCAA'S with Protein have found that BCAAs were able to stimulate skeletal muscle protein synthesis (MPS) to the same degree as all 9 EAAs. Of the BCAAs, only leucine was able to independently stimulate MPS.
Long term, periodised resistance training (RT) results in increases in skeletal muscle size and, ultimately, force generating capacity [3,4]. Sports nutrition scientists have attempted to increase training induced gains through a number of protocols, which generally attempt to augment and/or speed skeletal muscle regeneration. One such intervention has been to increase the provision of the branched chain amino acids (BCAAs), leucine, isoleucine, and valine, which make up more than one third of muscle protein [5]. The BCAAs are unique among the essential amino acids (EAAs) for their roles in protein metabolism [6], neural function [7-9], and blood glucose and insulin regulation [10]. Moreover, Garlick and colleagues [11] have found that BCAAs were able to stimulate skeletal muscle protein synthesis (MPS) to the same degree as all 9 EAAs. Of the BCAAs, only leucine was able to independently stimulate MPS [11]. It is well known that vigorous exercise can induce a net negative protein balance in response to both endurance and resistance training [12]. Norton and Layman proposed that consumption of BCAAs, namely leucine, could turn individuals from a negative to a positive whole-body protein balance after intense exercise [6]. In support, the consumption of a protein or EAA complex that contains sufficient leucine has been shown to shift protein balance to a net positive state after intense exercise training [6,13]. These findings led Norton and Wilson [14] to suggest that optimal protein intake per meal should be based on the leucine content of the protein consumed.
Early research indicates that 2-3 g, or up to 0.05 g/kg bodyweight, of leucine are required to maximize MPS [14-16].